LA SECTION DU CYLINDRE. LA SECTION DU CONE - EDITION BILINGUE

Belles Lettres - EAN : 9782251006314
SERENUS
Édition papier

EAN : 9782251006314

Paru le : 28 févr. 2019

67,00 € 63,51 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
  • Benefits Livraison gratuite
    en France sans minimum
    de commande
  • Benefits Manquants maintenus
    en commande
    automatiquement
  • Benefits Un interlocuteur
    unique pour toutes
    vos commandes
  • Benefits Toutes les licences
    numériques du marché
    au tarif éditeur
  • Benefits Assistance téléphonique
    personalisée sur le
    numérique
  • Benefits Service client
    Du Lundi au vendredi
    de 9h à 18h
  • EAN13 : 9782251006314
  • Collection : COLLECTION DES
  • Editeur : Belles Lettres
  • Date Parution : 28 févr. 2019
  • Disponibilite : Disponible
  • Barème de remise : NS
  • Nombre de pages : 540
  • Format : 3.50 x 12.50 x 19.50 cm
  • Poids : 645gr
  • Interdit de retour : Retour interdit
  • Résumé : Dans la Section du cylindre, Sérénus, prenant appui sur le Livre I des Coniques d’Apollonios de Pergé, démontre que l’on peut construire une ellipse semblable à l’ellipse obtenue dans le cône par la section transversale d’un cylindre circulaire droit ou oblique ; dans la Section du cône, il s’attache principalement à la comparaison des aires des sections triangulaires obtenues par des plans passant par le sommet du cône à base circulaire, droit ou oblique. Les deux traités, qui sont soigneusement composés, ne sont pas dénués d’originalité et constituent un témoignage précieux sur la géométrie grecque d’époque romaine.
    Le présent volume est la seconde édition critique des deux traités après celle du philologue danois Johan Ludvig Heiberg (1896) et procure la seconde traduction française après celle de l’historien des mathématiques belge, Paul Ver Eecke (1929).
  • Biographie :

    Michel Federspiel enseigna le grec à la Faculté des Lettres de l'Université de Clermont-Ferrand durant toute sa carrière. Il fut traducteur de textes scientifiques et techniques (Apollonius de Perge, Eutocius d’Ascalon, en collaboration avec M. Decorps-Foulquier) et spécialiste de la langue des mathématiques grecques, à laquelle il consacra de nombreux articles et notes. C’est sans doute sa traduction de l’ouvrage d’Árpád Szabó (Les débuts des mathématiques grecques, Paris, 1969) qui l’ancra définitivement dans le domaine des sciences. 

Haut de page
Copyright 2024 Cufay. Tous droits réservés.