HILBERT

Belles Lettres - EAN : 9782251760360
CASSOU-NOGUES PIERRE
Édition papier

EAN : 9782251760360

Paru le : 9 avr. 2001

21,00 € 19,91 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
  • Benefits Livraison gratuite
    en France sans minimum
    de commande
  • Benefits Manquants maintenus
    en commande
    automatiquement
  • Benefits Un interlocuteur
    unique pour toutes
    vos commandes
  • Benefits Toutes les licences
    numériques du marché
    au tarif éditeur
  • Benefits Assistance téléphonique
    personalisée sur le
    numérique
  • Benefits Service client
    Du Lundi au vendredi
    de 9h à 18h
  • EAN13 : 9782251760360
  • Collection : FIGURES DU SAVO
  • Editeur : Belles Lettres
  • Date Parution : 9 avr. 2001
  • Disponibilite : Disponible
  • Barème de remise : NS
  • Nombre de pages : 172
  • Format : 1.40 x 13.50 x 21.00 cm
  • Poids : 206gr
  • Interdit de retour : Retour interdit
  • Résumé :

    David Hilbert (1862-1943) est l'un de ces géants dont la figure domine l'histoire des mathématiques et marque le seuil d’une époque nouvelle. Il parcourt et transforme toutes les mathématiques, portant attention non plus à la nature des objets, la nature de l’espace en géométrie ou celle du nombre en arithmétique, mais à la structure des domaines. Ainsi, s’ouvre l’époque abstraite où, en France, grandira, par exemple, le groupe Bourbaki.

    Hilbert a indiqué des problèmes et des voies que les mathématiciens continuent d’explorer. Ses recherches ont donné appui à de nouvelles disciplines hors des mathématiques, comme la mécanique quantique ou l’informatique, et trouvé un écho inattendu hors des sciences exactes, dans la linguistique et la psychanalyse lacanienne.

    Avant tout, l’œuvre de Hilbert est le développement de la méthode abstraite qui caractérise les mathématiques modernes. Cette méthode, Hilbert l’applique dans tous les domaines mathématiques et, finalement, la pousse jusqu’à ses limites pour donner un fondement, une garantie dernière à la science. Le programme de fondement, que l’on a appelé le programme formaliste, donne lieu aux théorèmes d’incomplétude, qu’établit Gödel en 1931, et aux machines de Turing.

    Nous suivons cette aventure, de l’émergence de la méthode abstraite jusqu’au programme formaliste et aux résultats de Gödel et de Turing. Nous tentons d’en dégager la portée philosophique. Sont en jeu le statut de l’infini, l’extension et les caractères de la pensée humaine.

  • Biographie : Agrégé de mathématiques et docteur en philosophie
Haut de page
Copyright 2024 Cufay. Tous droits réservés.