GODEL

Belles Lettres - EAN : 9782251760407
CASSOU-NOGUES PIERRE
Édition papier

EAN : 9782251760407

Paru le : 12 janv. 2004

21,00 € 19,91 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
  • Benefits Livraison gratuite
    en France sans minimum
    de commande
  • Benefits Manquants maintenus
    en commande
    automatiquement
  • Benefits Un interlocuteur
    unique pour toutes
    vos commandes
  • Benefits Toutes les licences
    numériques du marché
    au tarif éditeur
  • Benefits Assistance téléphonique
    personalisée sur le
    numérique
  • Benefits Service client
    Du Lundi au vendredi
    de 9h à 18h
  • EAN13 : 9782251760407
  • Collection : FIGURES DU SAVO
  • Editeur : Belles Lettres
  • Date Parution : 12 janv. 2004
  • Disponibilite : Disponible
  • Barème de remise : NS
  • Nombre de pages : 190
  • Format : 1.50 x 13.50 x 21.00 cm
  • Poids : 236gr
  • Interdit de retour : Retour interdit
  • Résumé :

    Kurt Gödel (1906-1978), mathématicien, logicien et philosophe, est incontestablement l'un des plus grands esprits de notre temps. Ses réponses aux questions radicales posées par le XXe siècle au langage, aux mathématiques et à la pensée rationnelle ont modifié de façon décisive l'assise du savoir contemporain:

    Existe-t-il une langue qui permette d’isoler les phrases vraies dans tout monde possible? Pouvons-nous ou prouver ou réfuter chacune des phrases que nous pouvons y énoncer? Ou bien, dans une langue donnée, existe-t-il des phrases indécidables? Plus largement, existe-t-il des phrases absolument indécidables, qui, dans aucune langue plausible, ne seront ni prouvées ni réfutées?

    Sommes-nous des machines? Si nous pensons correctement, notre pensée doit pouvoir s’énoncer dans une langue univoque mais, en utilisant une langue définie, nous écrivons comme une machine. Existe-t-il des machines capables d’écrire tout ce que nous pouvons penser?

    Existe-t-il des objets qui ne sont ni dans l’espace ni dans le temps et que nous ne pouvons percevoir qu’avec nos esprits? Les nombres sont-ils de tels objets?

    Les mathématiques apparaissent comme le modèle de l’activité rationnelle et l’arithmétique donne le modèle de la certitude mathématique. Mais pouvons-nous donner un fondement à l’arithmétique élémentaire?

    On présente ici les réponses de Gödel, en suivant son œuvre logique et philosophique, depuis sa démonstration de la complétude sémantique du calcul des prédicats (1929) à sa réflexion sur le continu chez Cantor (1947), en passant par son théorème dit d’incomplétude (1931) – théorème qui a rendu Gödel fameux au-delà de son domaine et influencé jusqu’au psychanalyste Jacques Lacan.

  • Biographie : Agrégé de mathématiques et docteur en philosophie
Haut de page
Copyright 2024 Cufay. Tous droits réservés.