Nous utilisons des cookies pour améliorer votre expérience. Pour nous conformer à la nouvelle directive sur la vie privée, nous devons demander votre consentement à l’utilisation de ces cookies. En savoir plus.
MACHINE LEARNING - IMPLEMENTATION EN PYTHON AVEC SCIKIT-LEARN
ENI - EAN : 9782409032516
Édition papier
EAN : 9782409032516
Paru le : 13 oct. 2021
39,00 €
36,97 €
Epuisé
Pour connaître votre prix et commander, identifiez-vous
Arrêt définitif de commercialisation
Notre engagement qualité
-
Livraison gratuite
en France sans minimum
de commande -
Manquants maintenus
en commande
automatiquement -
Un interlocuteur
unique pour toutes
vos commandes -
Toutes les licences
numériques du marché
au tarif éditeur -
Assistance téléphonique
personalisée sur le
numérique -
Service client
Du Lundi au vendredi
de 9h à 18h
- EAN13 : 9782409032516
- Réf. éditeur : EIMLPYTSL
- Collection : EXPERT IT
- Editeur : ENI
- Date Parution : 13 oct. 2021
- Disponibilite : Epuisé
- Barème de remise : NS
- Nombre de pages : 325
- Format : 1.70 x 17.80 x 21.60 cm
- Poids : 527gr
-
Résumé :
Ce livre présente à des personnes non Data Scientists, et sans connaissances particulières en mathématiques, la méthodologie du Machine Learning, ses concepts, ses principaux algorithmes et l'implémentation de ceux-ci en Python avec Scikit-learn.
Il commence par une présentation du Machine Learning puis de la méthode CRISP où chaque phase est détaillée avec ses différentes étapes. Les premiers chapitres s’intéressent donc aux phases de Data Understanding (ou compréhension des données) et de Data Preparation (préparation des données). Dans le premier sont présentés des analyses statistiques de datasets, que cela soit sous forme numérique ou graphique. Dans le deuxième sont vues les principales techniques utilisées pour la préparation des données, avec leur rôle et des conseils sur leur utilisation.
Ensuite, plusieurs chapitres sont dédiés chacun à une tâche de Machine Learning : la classification, la régression, avec le cas particulier de la prédiction, ainsi que le clustering et plus globalement l’apprentissage non supervisé. Pour chaque tâche qui est présentée sont successivement détaillés les critères d’évaluation, les concepts derrière les principaux algorithmes puis leur implémentation avec Scikit-learn.
Pour illustrer les différents chapitres, les techniques et algorithmes présentés sont appliqués sur des datasets souvent utilisés : Iris (classification de fleurs), Boston (prévision de prix de vente d’appartements) et Titanic (prévision de la chance de survie des passagers du bateau). Le code Python est commenté et disponible en téléchargement (sous la forme de notebooks Jupyter) sur le site www.editions-eni.fr.
-
Biographie :
Virginie MATHIVET a fait une thèse de doctorat en Intelligence Artificielle, plus précisément sur les algorithmes génétiques et les réseaux de neurones. Après avoir enseigné l’intelligence artificielle, la robotique et des matières liées au développement pendant plus de 10 ans, elle est aujourd’hui directrice de la R&D chez TeamWork et manager « Modern Data », unité contenant les différentes équipes en charge des sujets data (IoT, IA/ML, Big Data, Data Engineering).
Également formatrice et conférencière, elle a été nommée première AWS Hero de la catégorie Machine Learning en France en 2021 et participe à des actions en faveur de la diversité dans les métiers du numérique.