Nous utilisons des cookies pour améliorer votre expérience. Pour nous conformer à la nouvelle directive sur la vie privée, nous devons demander votre consentement à l’utilisation de ces cookies. En savoir plus.
MACHINE LEARNING - IMPLEMENTATION EN PYTHON AVEC SCIKIT-LEARN (2E EDITION)
ENI - EAN : 9782409044823
Édition papier
EAN : 9782409044823
Paru le : 17 mai 2024
39,00 €
36,97 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
-
Livraison gratuite
en France sans minimum
de commande -
Manquants maintenus
en commande
automatiquement -
Un interlocuteur
unique pour toutes
vos commandes -
Toutes les licences
numériques du marché
au tarif éditeur -
Assistance téléphonique
personalisée sur le
numérique -
Service client
Du Lundi au vendredi
de 9h à 18h
- EAN13 : 9782409044823
- Réf. éditeur : EI2MLPYTSL
- Collection : EXPERT IT
- Editeur : ENI
- Date Parution : 17 mai 2024
- Disponibilite : Disponible
- Barème de remise : NS
- Nombre de pages : 338
- Format : 1.70 x 17.80 x 21.60 cm
- Poids : 548gr
-
Résumé :
Ce livre présente à des personnes non Data Scientists, et sans connaissances particulières en mathématiques, la méthodologie du Machine Learning, ses concepts, ses principaux algorithmes et l’implémentation de ceux-ci en Python avec Scikit-learn.
Il commence par une présentation du Machine Learning puis de la méthode CRISP où chaque phase est détaillée avec ses différentes étapes. Les premiers chapitres s’intéressent donc aux phases de Business Understanding (compréhension métier), Data Understanding (ou compréhension des données) et de Data Preparation (préparation des données). Dans ces chapitres sont présentées des analyses statistiques de datasets, que cela soit sous forme numérique ou graphique ainsi que les principales techniques utilisées pour la préparation des données, avec leur rôle et des conseils sur leur utilisation.
Ensuite, plusieurs chapitres sont dédiés chacun à une tâche de Machine Learning : la classification, la régression, avec le cas particulier de la prédiction, ainsi que le clustering et plus globalement l’apprentissage non supervisé. Pour chaque tâche qui est présentée sont successivement détaillés les critères d’évaluation, les concepts derrière les principaux algorithmes puis leur implémentation avec Scikit-learn.
Pour illustrer les différents chapitres, les techniques et algorithmes présentés sont appliqués sur des datasets souvent utilisés : Iris (classification de fleurs), Boston (prévision de prix de vente d’appartements) et Titanic (prévision de la chance de survie des passagers du bateau). Le code Python est commenté et disponible en téléchargement (sous la forme de notebooks Jupyter) sur le site www.editions-eni.fr.
-
Biographie :
Virginie MATHIVET a fait une thèse de doctorat en Intelligence Artificielle, plus précisément sur les algorithmes génétiques et les réseaux de neurones. Après avoir enseigné l’intelligence artificielle, la robotique et des matières liées au développement pendant plus de 10 ans, elle monte un département Data dans une ESN (IA, Data Engineering, Big Data). En 2023 elle crée sa propre entreprise, Hemelopse, pour se concentrer sur le conseil stratégique en IA, tout en continuant la formation et le coaching de data scientists. Elle est également conférencière.