Nous utilisons des cookies pour améliorer votre expérience. Pour nous conformer à la nouvelle directive sur la vie privée, nous devons demander votre consentement à l’utilisation de ces cookies. En savoir plus.
Euler et le parcours du cavalier
EAN : 9782880748579
Paru le : 29 janv. 2015
-
Livraison gratuite
en France sans minimum
de commande -
Manquants maintenus
en commande
automatiquement -
Un interlocuteur
unique pour toutes
vos commandes -
Toutes les licences
numériques du marché
au tarif éditeur -
Assistance téléphonique
personalisée sur le
numérique -
Service client
Du Lundi au vendredi
de 9h à 18h
- EAN13 : 9782880748579
- Réf. éditeur : G16938
- Collection : P U POLYTEC ROM
- Editeur : Pu Polytechnique
- Date Parution : 29 janv. 2015
- Disponibilite : Epuisé
- Barème de remise : NS
- Nombre de pages : 272
- Format : H:240 mm L:160 mm E:18 mm
- Poids : 508gr
- Interdit de retour : Retour interdit
-
Résumé :
Le problème du cavalier consiste à parcourir toutes les cases d'un échiquier, et une seule fois chacune, en sautant à une case distante de deux cases horizontalement et d'une case verticalement, ou inversement. S'il n'est guère difficile de couvrir une cinquantaine de cases, les tentatives de couvrir tout l'échiquier se révéleront le plus souvent décourageantes.
C'est pourquoi la découverte d'un moyen de parvenir à un trajet complet a définitivement associé ce problème au nom de Euler (1707-1783). Cet ouvrage rapporte l'ensemble de ses recherches, en tenant compte de ses notes manuscrites inédites (reproduites aussi en appendice). De même, son théorème des polyèdres, l'une de ses autres découvertes majeures, est enrichi ici par sa première démonstration, restée manuscrite.
Cet ouvrage intéressera les étudiants et les enseignants de mathématiques, mais aussi un public plus général, car les raisonnements d'Euler ne font appel à aucune connaissance profonde des mathématiques. Ne sachant comment aborder le problème du cavalier, Euler recourt aux essais, et peu à peu établit une théorie en fonction du succès ou de l'insuccès de ses tentatives. Pour le théorème des polyèdres, ce sont des analogies avec le cas des polygones qui le mèneront à la démonstration. Dans les deux cas, le lecteur assistera ici à la naissance et au développement d'une théorie nouvelle.