ALGEBRE ET GEOMETRIES - ARRANGEMENTS D'HYPERPLANS. DECOUPAGES EN DIMENSIONS 2 ET 3. INVARIANTS CONFO

Calvage Mounet - EAN : 9782916352305
BOYER PASCAL
Édition papier

EAN : 9782916352305

Paru le : 13 mai 2015

69,00 € 65,40 €
Epuisé
Pour connaître votre prix et commander, identifiez-vous
Manquant sans date
Notre engagement qualité
  • Benefits Livraison gratuite
    en France sans minimum
    de commande
  • Benefits Manquants maintenus
    en commande
    automatiquement
  • Benefits Un interlocuteur
    unique pour toutes
    vos commandes
  • Benefits Toutes les licences
    numériques du marché
    au tarif éditeur
  • Benefits Assistance téléphonique
    personalisée sur le
    numérique
  • Benefits Service client
    Du Lundi au vendredi
    de 9h à 18h
  • EAN13 : 9782916352305
  • Réf. éditeur : G22046
  • Collection : TABLEAU NOIR
  • Editeur : Calvage Mounet
  • Date Parution : 13 mai 2015
  • Disponibilite : Manque sans date
  • Barème de remise : NS
  • Nombre de pages : 724
  • Format : 3.50 x 17.00 x 24.00 cm
  • Poids : 1.257kg
  • Interdit de retour : Retour interdit
  • Résumé :

    Dans l'histoire de l'humanité, la géométrie a toujours irrigué les sciences et les arts : astronomie, cartographie, architecture, peinture... participant ainsi de l'indéfectible quête de la vérité et de la beauté. L'homme de goût, l'"honnête homme" se doit d'en étudier les fondements, d'en explorer les arcanes. L'auteur du présent ouvrage nous propose, dans cet esprit, de redécouvrir quelques-uns des plus beaux énoncés de géométrie, de l'école grecque à nos jours, en passant par la Renaissance et le XIXe siècle.

    Pascal Boyer s'appuie délibérément sur l'algèbre linéaire telle qu'elle est enseignée dans les premières années après le baccalauréat. Il présente ensuite les différentes géométries en faisant appel aux groupes et à leurs invariants, selon le point de vue adopté par Félix Klein dans son célèbre "Programme d'Erlangen". Sont ainsi traités la géométrie affine avec le calcul barycentrique, les classiques de la géométrie euclidienne, les géométries inversive et sphérique avec leurs applications cartographiques, la géométrie projective et ses points à l'infini, quelques énoncés inattendus de géométrie hyperbolique et, pour finir, de géométrie algébrique contemporaine.

    Ce voyage depuis les origines permettra aux lecteurs de se frotter aux classiques théorèmes de Ménélaüs, Céva, Pappus, Desargues, Pascal, Poncelet, à d'autres moins communs, tels les théorèmes de Bolyai, Dehn-Hadwiger et Tarski sur les découpages en dimension 2 et 3, les zigzags entre deux cercles/droites, le théorème de Clifford appliqué à celui de Jiang Zemin, aux problèmes de navigation et triangulation, à la géométrie projective sur F5 et à ses liens avec la configuration de Desargues, aux quadrilatères articulés, etc.

    Les étudiants motivés, les enseignants, les candidats au CAPES et à l'agrégation et d'une façon générale tous les amoureux de la géométrie trouveront dans cette somme une mine exceptionnelle de résultats et de problèmes, qui montre que cette discipline est loin d'avoir livré tous ses secrets, des plus sensationnels aux plus piquants.

    Plus de trois cents figures agrémentent les énoncés et font de ce livre un bel objet et une invitation à la joie.

Haut de page
Copyright 2024 Cufay. Tous droits réservés.