Nous utilisons des cookies pour améliorer votre expérience. Pour nous conformer à la nouvelle directive sur la vie privée, nous devons demander votre consentement à l’utilisation de ces cookies. En savoir plus.
ANALYSE, VOLUME 4 - APPLICATIONS A LA THEORIE DE LA MESURE
Hermann - EAN : 9782705661861
Édition papier
EAN : 9782705661861
Paru le : 21 oct. 1997
45,00 €
42,65 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
-
Livraison gratuite
en France sans minimum
de commande -
Manquants maintenus
en commande
automatiquement -
Un interlocuteur
unique pour toutes
vos commandes -
Toutes les licences
numériques du marché
au tarif éditeur -
Assistance téléphonique
personalisée sur le
numérique -
Service client
Du Lundi au vendredi
de 9h à 18h
- EAN13 : 9782705661861
- Réf. éditeur : 1770273
- Collection : ENSEIGNEMENT DE
- Editeur : Hermann
- Date Parution : 21 oct. 1997
- Disponibilite : Disponible
- Barème de remise : NS
- Nombre de pages : 452
- Format : 2.20 x 17.00 x 24.40 cm
- Poids : 616gr
- Interdit de retour : Retour interdit
- Résumé : ANALYSE IV. APPLICATIONS DE LA THÉORIE DE LA MESURE. Convolution des fonctions. Convolution des mesures. Transformation de Fourier des fonctions. Transformée de Fourier des mesures bornées. Convergence vague d'une suite de mesures vers une mesure de Dirac. Convergence étroite d'une suite de mesures de normes finies. Théorème de Paul Lévy. Fonctions à variation bornée sur la droite. Longueur d'un chemin dans un espace métrique. Fonctions absolument continues et intégrales indéfinies. Critère d'Abel pour la semi-convergence des intégrales impropres. Intégrales multiples sur Rn, longueurs, aires, volumes dans les espaces euclidiens affines de dimension finie. Changement de variable dans les intégrales multiples sur Rn. Calcul d'intégrales à partir d'intégrales d'hypersurface. Fonctions représentées par des séries. Fonctions représentées par des intégrales. Cas des intégrales impropres convergentes. Application à la divisibilité des fonctions dérivables. Formule de Stokes. Intégrale eulérienne. Formule d'Euler-McLaurin