Nous utilisons des cookies pour améliorer votre expérience. Pour nous conformer à la nouvelle directive sur la vie privée, nous devons demander votre consentement à l’utilisation de ces cookies. En savoir plus.
Apprentissage artificiel
EAN : 9782212110203
Paru le : 26 août 2002
-
Livraison gratuite
en France sans minimum
de commande -
Manquants maintenus
en commande
automatiquement -
Un interlocuteur
unique pour toutes
vos commandes -
Toutes les licences
numériques du marché
au tarif éditeur -
Assistance téléphonique
personalisée sur le
numérique -
Service client
Du Lundi au vendredi
de 9h à 18h
- EAN13 : 9782212110203
- Réf. éditeur : G11020
- Collection : ALGORITHMES
- Editeur : Eyrolles
- Date Parution : 26 août 2002
- Disponibilite : Epuisé
- Barème de remise : NS
- Nombre de pages : 638
- Format : H:230 mm L:171 mm E:36 mm
- Poids : 1.096kg
- Interdit de retour : Retour interdit
-
Résumé :
Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web...
Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples.
Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique unique pour l'ensemble des techniques regroupées sous ce terme "d'apprentissage artificiel".
Ce livre s'adresse aux décideurs et aux ingénieurs qui souhaitent comprendre l'apprentissage automatique et en acquérir des connaissances solides, ainsi qu'aux étudiants de niveau maîtrise, DEA ou école d'ingénieurs qui souhaitent un ouvrage de référence en intelligence artificielle et en reconnaissance des formes.
Cet ouvrage est publié avec le concours de l'École Nationale Supérieure des Sciences Appliquées et de Technologie (Lannion).
-
Biographie :
Yves Kodratoff est directeur de recherches au CNRS et dirige au LRI l'équipe Inférence et Apprentissage. Il s'intéresse à toutes les techniques de raisonnement inductif, et en particulier à leur application au data mining.