Des fleurs pour Schrödinger - la relativité d'échelle et ses applications

EAN : 9782729851828
CHALINE JEAN
Édition papier

EAN : 9782729851828

Paru le : 18 nov. 2009

29,00 € 27,49 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
  • Benefits Livraison gratuite
    en France sans minimum
    de commande
  • Benefits Manquants maintenus
    en commande
    automatiquement
  • Benefits Un interlocuteur
    unique pour toutes
    vos commandes
  • Benefits Toutes les licences
    numériques du marché
    au tarif éditeur
  • Benefits Assistance téléphonique
    personalisée sur le
    numérique
  • Benefits Service client
    Du Lundi au vendredi
    de 9h à 18h
  • EAN13 : 9782729851828
  • Réf. éditeur : CHAFLE
  • Date Parution : 18 nov. 2009
  • Disponibilite : Disponible
  • Barème de remise : NS
  • Nombre de pages : 432
  • Format : H:240 mm L:165 mm E:25 mm
  • Poids : 702gr
  • Résumé :

    Article paru dans la pressehttp://editions-ellipses.fr/PDF/9782729851828_Presse_BUP_ChalineNottale.pdf

     

     

     

    Ce livre développe une nouvelle représentation du monde, la nouvelle théorie de la « relativité d’échelle », qui prend en compte par construction toutes les échelles de la nature. Le « principe de relativité d’échelle » postule que les lois fondamentales de la nature doivent être valides quel que soit « l’état d’échelle » du système de référence. Il complète ainsi le « principe de relativité » de Galilée, Poincaré et Einstein qui s’appliquait seulement aux états de position, d’orientation et de mouvement. Dans son cadre, la géométrie « courbe » de l’espace-temps de la relativité d’Einstein peut être généralisée à un espace-temps fractal. La loi fondamentale de la dynamique prend, dans une telle géométrie, une forme quantique, en particulier celle de l’équation de Schrödinger, qui peut être généralisée pour ne plus forcément dépendre de la constante microscopique de Planck, ce qui permet d’envisager l’existence d’effets quasi quantiques macroscopiques d’un type nouveau. Cette théorie a des applications potentielles multiples et certaines de ses prédictions ont été testées avec succès, en astrophysique (structures gravitationnelles, en particulier exoplanètes), en cosmologie (constante cosmologique), en physique (constante de couplage forte), en paléontologie (arbre de l’évolution) et en économie (chronologie évolutive des sociétés). En biologie enfin, elle permet une nouvelle approche de la question de l’auto-organisation et de la formation et l’évolution de structures.

Haut de page
Copyright 2024 Cufay. Tous droits réservés.