Modules: théorie, pratique... et un peu d'arithmétique !

Calvage Mounet - EAN : 9782916352251
BERHUY GREGORY
Édition papier

EAN : 9782916352251

Paru le : 12 juil. 2012

40,00 € 37,91 €
Epuisé
Pour connaître votre prix et commander, identifiez-vous
Remplacé par : 9782916352824
Arrêt définitif de commercialisation
Notre engagement qualité
  • Benefits Livraison gratuite
    en France sans minimum
    de commande
  • Benefits Manquants maintenus
    en commande
    automatiquement
  • Benefits Un interlocuteur
    unique pour toutes
    vos commandes
  • Benefits Toutes les licences
    numériques du marché
    au tarif éditeur
  • Benefits Assistance téléphonique
    personalisée sur le
    numérique
  • Benefits Service client
    Du Lundi au vendredi
    de 9h à 18h
  • EAN13 : 9782916352251
  • Réf. éditeur : G22041
  • Collection : MATHEMATIQUES E
  • Editeur : Calvage Mounet
  • Date Parution : 12 juil. 2012
  • Disponibilite : Epuisé
  • Barème de remise : NS
  • Nombre de pages : 388
  • Format : H:236 mm L:161 mm E:20 mm
  • Poids : 552gr
  • Interdit de retour : Retour interdit
  • Résumé :

    Malgré la place de choix accordée à la théorie des modules dans l'oeuvre de Bourbaki, les modules restent encore de nos jours un épouvantail pour beaucoup d'étudiants et peut-être aussi pour nombre de leurs professeurs. Ces objets, qui sont à juste titre plus compliqués que les espaces vectoriels, ne manquent pourtant pas de charme et s'avèrent dans la pratique d'une efficacité sans pareille. Faut-il pour cela les introduire courageusement dès la licence ou surseoir à cela jusqu'au master ?

    L'auteur du présent ouvrage fait oeuvre de démystificateur, en étant à ces objets tout leur aspect insolite ou déroutant. Sans renoncer à aller au plus près des énoncés et de leurs démonstrations, Grégory Berhuy nous prend par la main, fait les vérifications que beaucoup d'auteurs laissent "soigneusement" à la sagacité des lecteurs et finit par rendre ces objets aussi familiers qu'un groupe ou qu'un anneau. Mais, il ne s'arrête évidemment pas là, puisqu'il nous montre comment, une fois maîtrisée, la théorie des A-modules de type fini, pour A anneau principal, règle leur sort à bien des problèmes réputés difficiles comme la réduction des endomorphismes ou l'étude des réseaux. Ce cours introductif traite surtout le cas des A-modules, où A est un anneau commutatif ; dès lors, une montée en niveau nous mène naturellement vers la théorie algébrique des nombres, notamment vers l'examen des anneaux d'entiers de corps de nombres, où le langage des modules offre le cadre le plus opportun pour appréhender les notions d'idéal fractionnaire et de factorisation dans les anneaux de Dedekind.

    De même que l'on saisit pleinement la notion abstraite de groupe en le faisant opérer diversement sur des ensembles ou mieux sur des espaces vectoriels, la démarche analogue pour saisir ce qu'est un anneau consiste à le faire vivre dans l'anneau des endomorphismes de divers groupes abéliens. C'est tout simplement cela les A-modules. Et cette chose, si naturelle, s'avère d'une fécondité époustouflante. D'aucuns évoquent d'initier les adolescents à la topologie dès le collège, alors pourquoi ne ferait-on pas autant pour les modules dès le lycée ?

Haut de page
Copyright 2024 Cufay. Tous droits réservés.