Nous utilisons des cookies pour améliorer votre expérience. Pour nous conformer à la nouvelle directive sur la vie privée, nous devons demander votre consentement à l’utilisation de ces cookies. En savoir plus.
reseaux bayesiens avec r
Edp Sciences - EAN : 9782759811984
Édition papier
EAN : 9782759811984
Paru le : 21 nov. 2014
20,00 €
18,96 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
-
Livraison gratuite
en France sans minimum
de commande -
Manquants maintenus
en commande
automatiquement -
Un interlocuteur
unique pour toutes
vos commandes -
Toutes les licences
numériques du marché
au tarif éditeur -
Assistance téléphonique
personalisée sur le
numérique -
Service client
Du Lundi au vendredi
de 9h à 18h
- EAN13 : 9782759811984
- Réf. éditeur : S54818
- Collection : PRATIQUE R
- Editeur : Edp Sciences
- Date Parution : 21 nov. 2014
- Disponibilite : Disponible
- Barème de remise : NS
- Format : H:235 mm L:155 mm E:12 mm
- Poids : 450gr
- Résumé : Cet ouvrage introduit ses lecteurs à la découverte des réseaux bayésiens. À partir d'exemples simples, mais suffisamment complexes pour détailler les différents mécanismes en cause, les trois premiers chapitres présentent les réseaux bayésiens pour variables discrètes, variables gaussiennes et variables quelconques. Toutes les étapes de construction, de vérification des propriétés, d'estimation et d'interprétation sont illustrées par l'usage de fonctions R. Le but est de permettre aux lecteurs de reproduire la démarche pour leurs propres problématiques, en utilisant leurs propres données par simple adaptation de ce qui est présenté. Le quatrième chapitre propose un traitement concis mais rigoureux des théories mathématiques sous-jacentes couvrant la définition des réseaux bayésiens, les principaux algorithmes d'apprentissage de structure à partir de données et les requêtes d'exploration des propriétés d'un réseau estimé pour répondre à diverses questions concrètes. Le cinquième chapitre est dédié à une revue des principaux logiciels disponibles, en particulier des paquets R existant. Le sixième chapitre est le traitement en détails de deux situations réelles qu'ont abordées les auteurs dans leurs activités professionnelles, à l'aide des réseaux bayésiens. Il comprend également les principales commandes de R utilisées pour mener les calculs. Les cinq premiers chapitres comportent des exercices dont les solutions sont proposées en fin d'ouvrage. Deux annexes indépendantes sont consacrées à la théorie des graphes et aux distributions de probabilité majeures. Enfin, un glossaire des termes spécialisés employés tout au long de l'ouvrage est fourni ainsi qu'un index général, il contient en particulier les références de toutes les fonctions R invoquées. Les auteurs ont cherché à d'abord expliquer les concepts par l'intuition et l'exemple avant d'aboutir au formalisme mathématico-informatique. À la fois pratique et théorique l'ouvrage sera utile aussi bien aux chercheurs et ingénieurs qui doivent modéliser une situation incertaine ou interpréter des données où interviennent de nombreuses variables aléatoires qu'aux étudiants en mathématiques appliquées.